


#### Development and Pilot Line Validation of a Modular Re-Configurable Laser Process Head



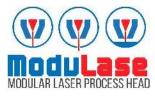




#### ModuLase Overview: Main Objectives vs. Achievements

17<sup>th</sup> June 2021

#### ModuLase Consortium













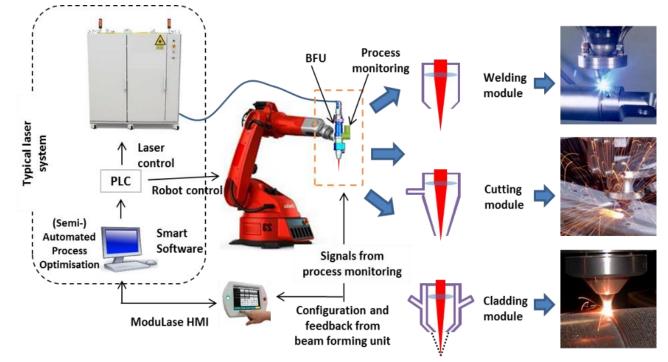

#### Contents

- Overview of the project
- Introduction of Consortium
- Scientific objectives
- Achievements for the project



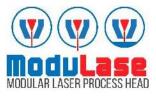
### Introduction to the Project




- H2020-FOF-13-2016 call
- Factories of the Future: Photonics Laser-based production
- Start date: 1<sup>st</sup> September 2016
- Duration: 57 months
- Received EC funding: €2,458,465 (€2,184,565 Grant)
- Programme directly focused on "Rapid individualised laserbased production"

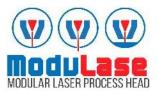


The ModuLase project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. H2020–FoF-2016- 723945-ModuLase. The project is an initiative of the Photonics and Factories of the Future Public Private Partnerships'


#### **Business Need**



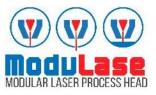


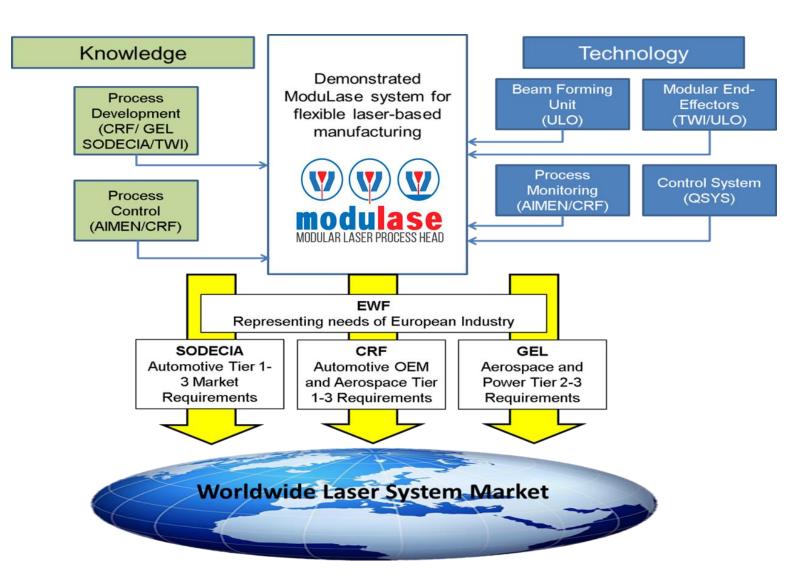

- Develop a processing head covering **welding**, **cladding** and **cutting**, through the use of three modular end-effectors and re-configurable optics
- Include intelligent sensor technologies for in-process monitoring
- Be linked to an intelligent user interface system, to achieve adaptive process control, quality assurance, and semi-automated process parameters configuration

#### Expected ModuLase Outputs



- Reduced capital investment costs:
  - End-users will save as much as 59% when installing the ModuLase head, compared to conventional laser processing without the developments made in this project (1xprocess head with three endeffectors considered in this project)
  - Higher savings possible for organisations adopting more end-effectors
- Maximise laser equipment utilisation rates by reducing down-time:
  - Anticipated changeover time of <1 minute for the proposed ModuLase process head
  - Improved utilisation rates
- Reduced running costs:
  - Reconfiguring the Beam Forming Unit (BFU) to match the required beam configuration will save time and cost
  - The integrated process control and monitoring system also helps minimise, if not eliminate, defects and therefore save on re-work or scrappage


### The ModuLase Consortium




- 8 participants from 4 countries
- 50% RTO, 25% SMEs and 25% LEs
- End users within the power, aerospace and automotive sectors

| Activities                                  | Consortium     |
|---------------------------------------------|----------------|
| Beam Forming Unit                           | ULO Optics     |
| End Effectors                               | TWI SODECIA    |
| Process monitoring and quality control      |                |
| Laser processing development and validation | TWI            |
| User friendly Operating/User interface      | Q -Sys         |
| Training, Dissemination & Exploitation      |                |
| Automotive and Aerospace applications       | Graham SODECIA |

#### ModuLase Technologies & Industry Focus





## Objectives of the Project



## 1. Develop a Beam Forming Unit (BFU) for Tailoring Laser Beam Energy Distribution


 Re-configurable collimating and focusing optics (by mounting them on automated drives) to allow tailored beam caustics to be produced for welding, cladding and cutting applications

## **2.** Develop End-Effectors for Welding, Cladding and Cutting Applications

- A range of rapidly interchangeable end-effectors designed and built for welding, cladding and cutting
- Each having the same 'plug and play' connection method to the BFU
- End-effectors will provide the additional functionality for each process (for example, cutting assist-gas, wire/powder-feed and plume control)



## Objectives of the Project



#### 3. Develop a Co-Axial In-Process Quality Assurance System

- Commercial in-process monitoring systems exist for laser cladding, welding and cutting applications
- However, the systems are not currently compatible for all three processes. In ModuLase, quality monitoring unit to be suitable for welding, cladding and cutting applications

#### 4. Develop Software Package and Integrate with Process Head

 User-friendly software package required to interface with other parts of the wider laser processing system and for human interface



## Objectives of the Project



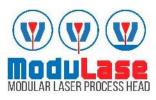
6. Validate the Flexibility of the ModuLase system for Welding, Cladding and Cutting at a Pilot Facility

End-user applications targeted for the ModuLase system:

| End-user | Application                                                                           | Process(es)       |
|----------|---------------------------------------------------------------------------------------|-------------------|
| SODECIA  | Shift forks for automotive gearbox components, constructed from steel- based material | Welding, Cladding |
| GEL      | Titanium aerospace parts (eg gas turbine components)                                  | Welding, Cutting  |
| CRF      | Galvanized steel door frame parts                                                     | Welding, Cutting  |



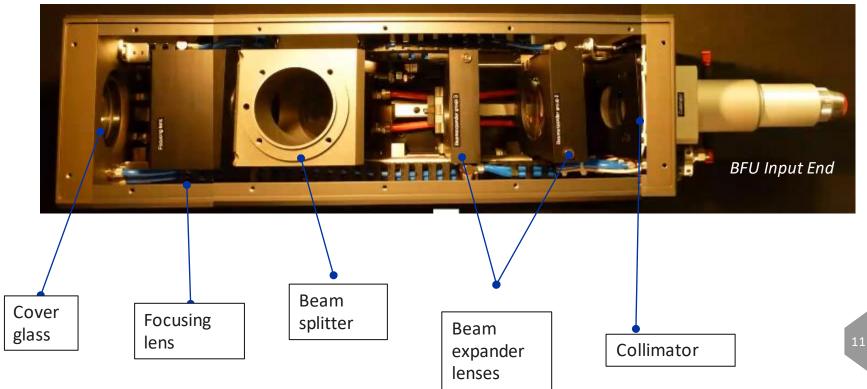












## Achievements

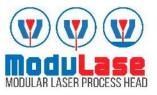


#### Beam Forming Unit (BFU)

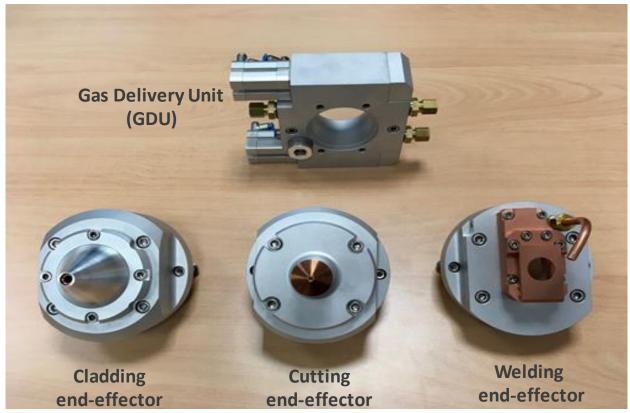
 Adaptable optical elements capable of delivering a wide range of laser beam energy distributions, suitable for welding, cutting and cladding applications

#### Hardware - BFU

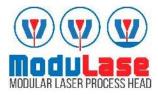



#### Achievements - BFU

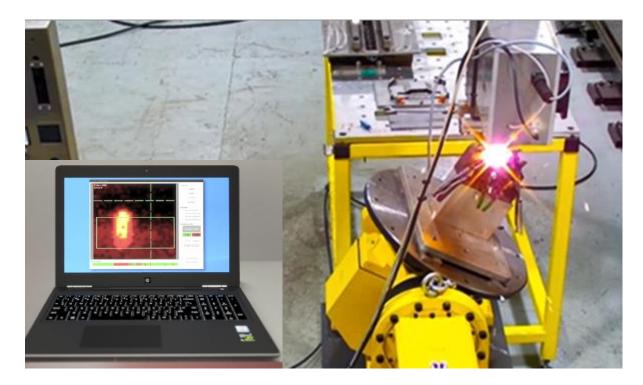



- Power handling capability up to 10kW, and compatible with 1µm wavelength laser sources
- Capable of providing focus spot sizes varied by a factor of 3 (fibre diameter is benchmark)
- Reduce optical configuration changeover from current 1-2 hours to <1 minute, minimising down-time.
- Positional accuracy of 0.05mm of optical component drives, to ensure accurate beam caustics
- Optical compatibility with co-axial process monitoring technology



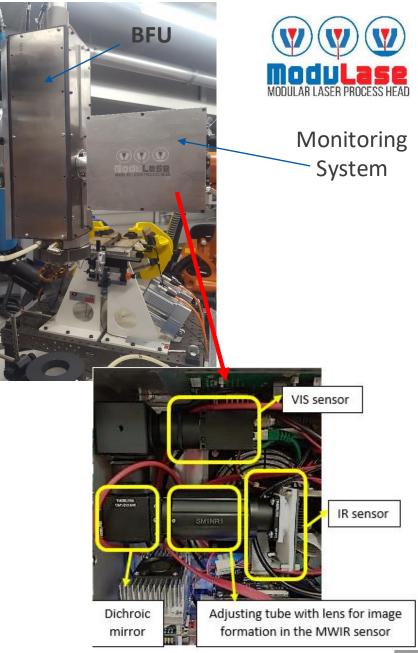

#### Achievements – End Effectors




- Three rapidly interchangeable end-effectors to cover welding, cutting and cladding applications
- Plug and play system to allow them to be changed on the end of the process head within a time of 1 minute



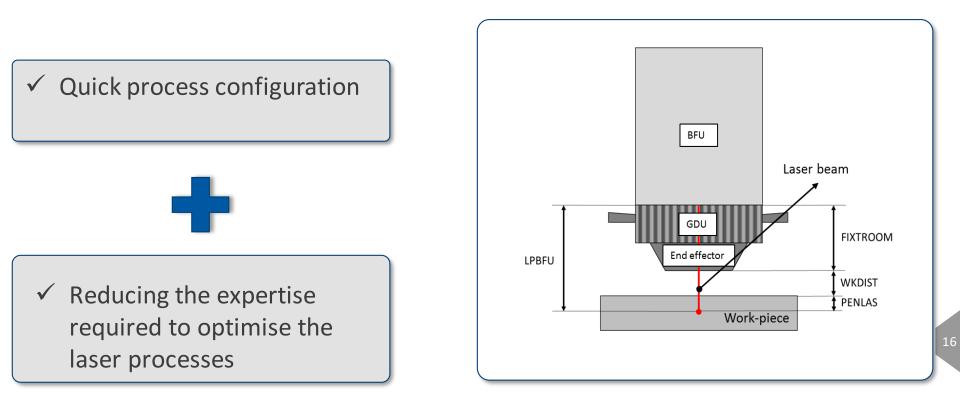
#### Achievements – Quality Assurance




- A process monitoring system suitable for welding, cladding and cutting processes developed
- Embedded into the ModuLase system, in order to assure process stability, reduce scrap rate, enabling to reduce additional time and costs involved in the process

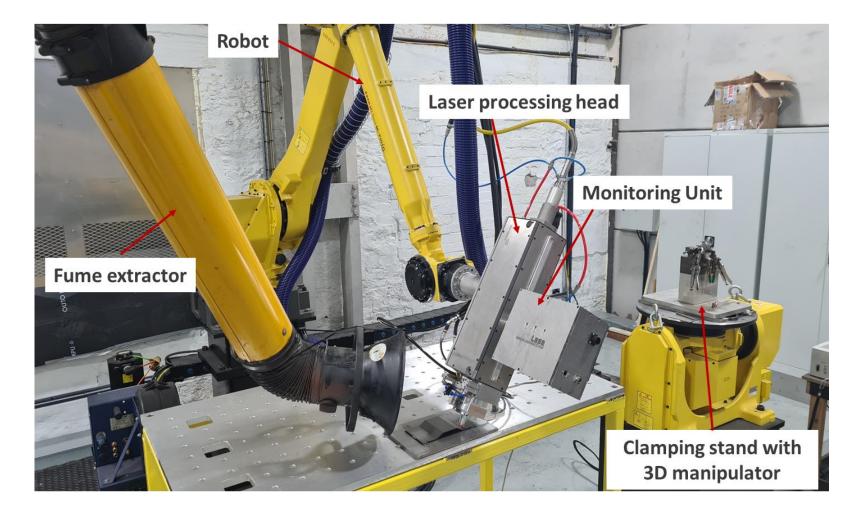


#### Achievements Quality assurance


- Effective and compatible with the three different laser processes
- Arrangement includes camera-based sensors which cover different spectral bands from visible (VS) to infrared (IR) embedded electronics and optical components
- ✓ Molten pool is monitored in real time
- Deviations from stable reference conditions are captured, localized and identified as anomalies of the process



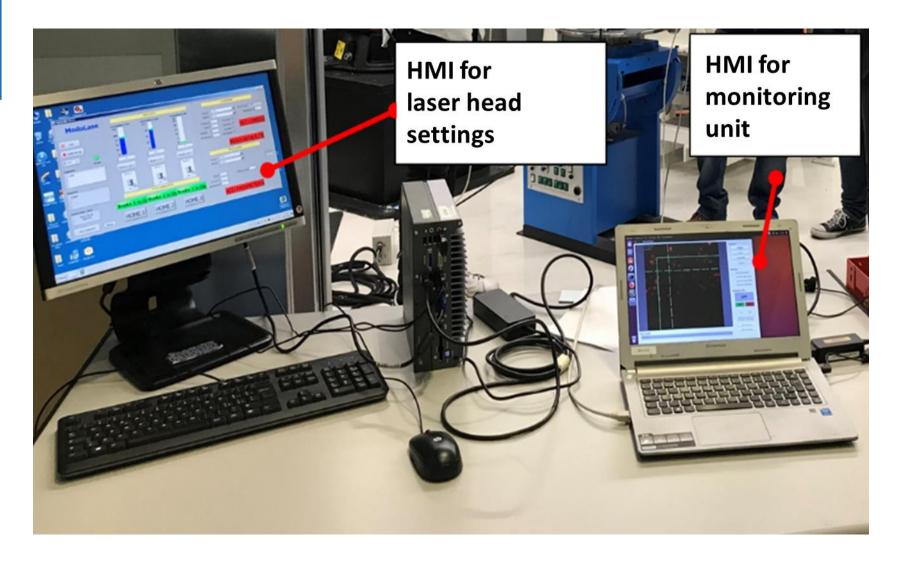

#### Achievements - Friendly User-interface




- User friendly Human Machine Interface (HMI) interface, enabling to input the material grade, its thickness and the laser process required
- Both the Quality Assurance System and BFU shall adjust vision and optical configurations and deliver the beam accordingly with minimal user contact



# System Set-up and Validated at GEL Pilot Cell






Check <u>https://www.modulase.eu/documents.html</u> for project videos!

# System Set-up and Validated at GEL Pilot Cell





#### Summary



- The Modulase system has been designed and manufactured to:
  - Be flexible and accommodate three different laser processes -welding, cutting and cladding
  - Comprise monitoring unit and embedded intelligent algorithms for setting the optical configuration and help the user in the selection of process parameters
- By analysing results reached during the validation stage, it was possible to verify that proposal claims have been reached, meeting objectives of the project



#### Summary



- The following benefits were achieved from the use of the ModuLase system (compared to conventional laser processing without the developments made in this project):
  - 40% Equipment investment saving (1xBFU)
  - Up to 40% Space saving
  - Up to 20% Production time saving
  - < 1 min changeover of end effector</li>















## Further information available at: <u>http://www.modulase.eu/</u>

#### Dr Paola De Bono

TWI Ltd, Granta Park, Cambridge, CB21 6AL, UK Tel: +44 (0) 1223 899530

E-mail: paola.debono@twi.co.uk





